Package: Kernelheaping 2.3.0
Kernelheaping: Kernel Density Estimation for Heaped and Rounded Data
In self-reported or anonymised data the user often encounters heaped data, i.e. data which are rounded (to a possibly different degree of coarseness). While this is mostly a minor problem in parametric density estimation the bias can be very large for non-parametric methods such as kernel density estimation. This package implements a partly Bayesian algorithm treating the true unknown values as additional parameters and estimates the rounding parameters to give a corrected kernel density estimate. It supports various standard bandwidth selection methods. Varying rounding probabilities (depending on the true value) and asymmetric rounding is estimable as well: Gross, M. and Rendtel, U. (2016) (<doi:10.1093/jssam/smw011>). Additionally, bivariate non-parametric density estimation for rounded data, Gross, M. et al. (2016) (<doi:10.1111/rssa.12179>), as well as data aggregated on areas is supported.
Authors:
Kernelheaping_2.3.0.tar.gz
Kernelheaping_2.3.0.zip(r-4.5)Kernelheaping_2.3.0.zip(r-4.4)Kernelheaping_2.3.0.zip(r-4.3)
Kernelheaping_2.3.0.tgz(r-4.4-any)Kernelheaping_2.3.0.tgz(r-4.3-any)
Kernelheaping_2.3.0.tar.gz(r-4.5-noble)Kernelheaping_2.3.0.tar.gz(r-4.4-noble)
Kernelheaping_2.3.0.tgz(r-4.4-emscripten)Kernelheaping_2.3.0.tgz(r-4.3-emscripten)
Kernelheaping.pdf |Kernelheaping.html✨
Kernelheaping/json (API)
# Install 'Kernelheaping' in R: |
install.packages('Kernelheaping', repos = c('https://mgross.r-universe.dev', 'https://cloud.r-project.org')) |
- students - Student0405
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 3 years agofrom:d916c0c728. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 13 2024 |
R-4.5-win | OK | Nov 13 2024 |
R-4.5-linux | OK | Nov 13 2024 |
R-4.4-win | OK | Nov 13 2024 |
R-4.4-mac | OK | Nov 13 2024 |
R-4.3-win | OK | Nov 13 2024 |
R-4.3-mac | OK | Nov 13 2024 |
Exports:createSim.Kernelheapingdbivrdclassdheapingdshape3dPropdshapebivrdshapebivrPropsim.KernelheapingsimSummary.KernelheapingtoOtherShapetracePlots
Dependencies:abindbootclicodetoolscontfraccubatureDBIdeldirdeSolvedoParalleldplyrellipticfansifastmatchfitdistrplusFNNforeachGB2genericsgluegoftesthypergeoiteratorskernlabKernSmoothkslaekenlatticelifecyclemagrittrMASSMatrixmclustmgcvminqamisc3dmitoolsmulticoolmvtnormnlmenumDerivpillarpkgconfigplyrpolyclippracmaR6RcppRcppArmadillorlangrpartspsparrspatstatspatstat.dataspatstat.explorespatstat.geomspatstat.linnetspatstat.modelspatstat.randomspatstat.sparsespatstat.univarspatstat.utilssurveysurvivaltensortibbletidyselectutf8vctrswithr